quarta-feira, 9 de setembro de 2020

Exercícios da Aula 4

1> Em termos dos vetores unitários, qual é o torque resultante em relação à origem a que está submetida uma pulga localizada nas coordenadas (0; -4,0 m; 5,0 m) quando as forças F1 = 3 k (N) e F2 = - 2 j (N) agem sobre a pulga?



2> Em um certo instante, a força F = 4,0 j (N) age sobre um objeto de 0,25 kg cujo vetor posição é r = (2,0 i - 2,0 k)  m e cujo vetor velocidade é v = (-5,0 i + 5,0 k) m/s. Em relação à origem e em termos dos vetores unitários, qual é (a) o momento angular do objeto e (b) o torque que age sobre o objeto?

3> Um objeto de 2,0 kg, que se comporta como uma partícula se move em um plano com componentes de velocidade vx = 30 m/s e vy = 60 m/s ao passar por um ponto de coordenadas (3,0; -4,0)m. Nesse instante, em termos dos vetores unitários, qual é o momento angular do objeto em relação (a) à origem e (b) ao ponto (-2,0; -2,0) m?

4> Uma partícula sofre ação de dois torques em relação à origem: Torque 1 tem módulo de 2,0 N.m e aponta no sentido positivo do eixo x; Torque 2 tem módulo de 4,0 N.m e aponta no sentido negativo do eixo y. Determine dL/dt, onde L é o momento angular da partícula em relação à origem, em termos dos vetores unitários.

5> Duas patinadoras com 50 kg de massa, que se movem com velocidade escalar de 1,4 m/s, se aproximam em trajetórias paralelas separadas por 3,0 m. Uma das patinadoras carrega uma vara comprida, de massa desprezível, segurando-a em uma extremidade, e a outra se agarra à outra extremidade ao passar pela vara, o que faz com que as patinadoras passem a descrever uma circunferência em torno do centro da vara. Suponha que o atrito entre entre as patinadoras e o gelo é desprezível. Qual é (a) o raio da circunferência, (b) a velocidade angular das patinadoras, (c) a energia cinética do sistema das duas patinadoras? Em seguida, as patinadoras puxam a vara até ficarem separadas por uma distância de 1,0 m. Nesse instante, qual é (d) a velocidade angular das patinadoras e (e) a energia cinética do sistema? (f) De onde vem a energia cinética adicional?

6> Uma barata de massa 0,17 kg corre no sentido anti-horário na borda de um disco circular de raio 15 cm e momento de inércia 5,0 x 10ˆ-3 kg . mˆ2, montado em um eixo vertical com atrito desprezível. A velocidade da barata (em relação ao chão) é de 2,0 m/s e o disco gira no sentido horário com uma velocidade angular de 2,8 rad/s. A barata encontra uma migalha de pão na borda e, obviamente, para. Qual é a velocidade angular do disco depois que a barata para?

Nenhum comentário:

Postar um comentário